MISSISSIPPI STATE DEPARTMENT OF HEALTH BUREAU OF PUBLIC WATER SUPPLY CCR CERTIFICATION CALENDAR VEAD 2012

CALENDAR YEAR 2013 CZTLOS GRENADA WATER DEPARTMENT

/	Public water Supply Name
0220003,0220004.	O220005 O22007 O220036 O220062 PWS ID #s for all Community Water Systems included in this CCR
List	PWS ID #s for all Community Water Systems included in this CCR

The Federal Safe Drinking Water Act (SDWA) requires each Community public water system to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. You must mail, fax or email a copy of the CCR and Certification to MSDH. Please check all boxes that apply.

Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
Advertisement in local paper (attach copy of advertisement) On water bills (attach copy of bill) Email message (MUST Email the message to the address below) Other
Date(s) customers were informed:/,/
CCR was distributed by <u>U.S. Postal Service</u> or other direct delivery. Must specify other direct delivered methods used
Date Mailed/Distributed: OS / QO / Q D / 4
CCR was distributed by Email (MUST Email MSDH a copy) As a URL (Provide URL As an attachment As text within the body of the email message
CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
Name of Newspaper:
Date Published://
CCR was posted in public places. (Attach list of locations) Date Posted: 5/5/4
CCR was posted on a publicly accessible internet site at the following address (DIRECT URL REQUIRED)
MHAP: / WWW. City of GRENGOD, NET/MENT-MEDIA NEWS
CERTIFICATION I hereby certify that the 2013 Consumer Confidence Report (CCR) has been distributed to the customers of the public water system in the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi Star Department of Health, Bureau of Public Water Supply.
Name/Title President, Mayor, Owner, etc.) Date Date
Vanio Pare de resident, situator, encep

May be faxed to:

May be emailed to:

Melanie. Yanklowski@msdh.state.ms.us

(601)576~7800

Deliver or send via U.S. Postal Service:

Bureau of Public Water Supply

P.O. Box 1700 Jackson, MS 39215

2014/001 - 5 PM 12: 26

2013 Annual Drinking Water Quality Report City of Grenada WS#: 220003, 220004, 220005, 220007, 220036 & 22

PWS#: 220003, 220004, 220005, 220007, 220036 & 220062 April 2014

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox, Middle Wilcox and Lower Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the City of Grenada have received lower to higher susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Dale Ratliff at 662-227-3415. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of the month at 6:00 PM at City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2013. In cases where monitoring wasn't required in 2013, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

PWS ID#	:022000	3		TEST RESUL	TS			
Contaminant	Violatio n Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganio	Contar	ninants						
10. Barium	N	2011*	.142	.075 – .142	ррт	2	2	Discharge of drilling wastes; discharge from metal refineries;

									erosion of natural deposits
14. Copper	N	2011/13	.5	0	þi	om	1.3	AL=1.3	Corrosion of household plumbin systems; erosion of natural deposits; leaching from wood preservatives
15. Cyanide	N	2011*	147	46 – 1,47	pį	ob	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
16. Fluoride	N	2011*	.132	No Range	pp	om	4	4	Erosion of natural deposits; wat additive which promotes strong teeth; discharge from fertilizer a aluminum factories
17. Lead	N	2011/13	1	0	pr	ob	0	AL=15	Corrosion of household plumbin systems, erosion of natural deposits
Disinfectio 81. HAA5	n By-	-Product	S 17	10 - 17	ppb	0			y-Product of drinking water
81. HAA5 82. TTHM [Total	*			10 - 17	ppb	0		80 B	y-Product of drinking water sinfection. y-product of drinking water nlorination.
81. HAA5 82. TTHM	N	2013	17				MDR	80 B cl	sinfection. y-product of drinking water
81. HAA5 82. TTHM [Total trihalomethanes]	N N	2013 2013 2013	4.99	1.01 – 4.99	ppb	0	MDR	80 B cl	sinfection. y-product of drinking water nlorination. /ater additive used to control

PWS ID#:	220004			TEST RESI	ULTS				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects # of Samples Exceeding MCL/ACL	or Uni Meas -mei	иге	1CLG	MCI	Likely Source of Contamination
Inorganic (Contam	inants							
10. Barium	N	2011*	.02	.01802	ppm		2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2011*	2.3	1.1 – 2.3	ppb		100	1	OD Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2009/11*	.2	0	ppm		1.3	AL=1	1.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2011*	.186	.182 1.86	ppm		4		4 Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Disinfection					.				
81. HAA5	N :	2012* 7	l N	o Range p	pb	0		60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N 2	2012* 2	.18 N	o Range p	pb	0		80	By-product of drinking water chlorination.
Chlorine	N 2	2013 1	2 1	– 1.3 p	pm	0	MDF	RL = 4	Water additive used to control microbes

PWS ID#	: 220005			TEST RES	UL	ΓS				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detection # of Sample Exceeding MCL/ACL	s	Unit Measure -ment	MCL	.G MC	L	Likely Source of Contamination
Inorganic	Contam	inants								
10. Barium	N	2011*	.0263	No Range		ppm		2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Disinfection	on By-Pro	ducts								
81. HAA5	N 2	2012* 2	N	o Range	ppb		0	60		y-Product of drinking water sinfection.
Chlorine	N 2	2013 1	1 1	1.2	ppm		0	MDRL = 4		ater additive used to control icrobes

PWS ID#:	220007		I	TEST RESU	ULT	'S				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects # of Samples Exceeding MCL/ACL		Unit Measure -ment	MCLG	MC	L	Likely Source of Contamination
Inorganic	Contan	inants								
10. Barium	N	2011*	.030	.016030		opm		2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2011*	2.7	2.6 – 2.7		opb	10	0	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	Ν	2011/13	.3	0	[]	opm	1.	3 AL=	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2011*	.20	.1720	ļ	pm	,	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2011/13	3	0	ř	opb	I) AL=	=15	Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2011*	2.6	No Range	t	opb	51)	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfection	n By-Pı	oducts								
81. HAA5	N	2011*	4 N	o Range p	opb		0	60		y-Product of drinking water sinfection.
82. TTHM [Total trihalomethanes]	N	2011*	15.64 N	o Range p	opb		0	80		r-product of drinking water lorination.
Chlorine	N	2013	1 .9) – 1.2 p	pm	0	MDRI	_= 4 W	ater	additive used to control microbes

PWS ID#:	220036		7	TEST RESUL	TS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
8. Arsenic	N	2011*	.9	No Range	ppb	n/a	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
10. Barium	N	2011*	.018	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2011*	2.5	1.9 – 2.5	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits

14. Copper	N	2009/11*	.4	0	pi	pm	1.3	AL=1	1.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
15. Cyanide	N	2011*	16.28	No Range	þi	pb	200	2	200 Discharge from steel/metal factories; discharge from plastic and fertilizer factories
16. Fluoride	N	2011*	.175	No Range	PI	pm	4		4 Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2009/11*	4	0	pį	pb	0	AL=	 Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2011*	3.2	3 – 3.2	pį	ob	50		50 Discharge from petroteum and metal refineries; erosion of natural deposits; discharge from mines
Volatile O	rganic	Contam	inants						
76. Xylenes	N	2013	.0007	No Range	p	om	10		Discharge from petroleum factories; discharge from chemical factories
Disinfectio	n By-	Products							
81. HAA5	N	2013	2	No Range	ppb	0		60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N	2013	2.14	No Range	ppb	0		80	By-product of drinking water chlorination.
Chlorine	N	2013	1.5	1 – 10	ppm	0	MDI	RL = 4	Water additive used to control microbes

PWS ID#:	220062			TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects of # of Samples Exceeding MCL/ACL	r Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
10. Barium	N	2011*	.04	00404	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2011*	2.2	1.7 - 2.2	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2009/11*	.3	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2011*	.115	.108115	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2009/11*	2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Disinfection	on By-Pr	oducts						
Chlorine	N :	2013 1	.2 1	1.2 pp	n	0 MDF		Vater additive used to control nicrobes

^{*} Most recent sample. No sample required for 2013.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

The City of Grenada works around the clock to provide top quality water to every tap. We have four certified operators on staff, who would be pleased to answer any and all customer questions. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

2013 Annual Drinking Water Quality Report City of Grenada PWS#: 220003, 220004, 220005, 220007, 220036 & 220062 April 2014

2014 JUN - 3 AM 10: 38

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox, Middle Wilcox and Lower Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the City of Grenada have received lower to higher susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Dale Ratliff at 662-227-3415. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of the month at 6:00 PM at City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st , 2013. In cases where monitoring wasn't required in 2013, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity, microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the pr

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/i) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000.000

PWS ID#:022	20003			······		Т	EST R	ESULTS
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Inorganic Co	ntamina	ants					·····	
10. Barium	N	2011*	0.142	.075142	ppm	2	2	Discharge of drilling wastos; discharge from metal refineries; fersion of natural deposits
14. Copper	N	2011/13	0.5	0	ppm	1.3	AL≈1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
15. Cyanide	N	2011*	147	46 1.47	ppb	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
16. Fluoride	N	2011*	0.132	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2011/13	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Disinfection I	3v-Prod	lucts		·				
81. HAA5	N	2013	17	10 - 17	ppb	0	60	By-Product of drinking water disinfection.
82. TTHM (Total trihalomethanes)	Ŋ	2013	4.99	1.01 4.99	ррь	0	80	By-product of drinking water chlorination.
Chlorine	N	2013	1	.70- 1.30	ppm	0	MDRL ≈ 4	Water additive used to control microbes
Unregulated	Contam	inants				4	·····	
Stronlium	N	2013	0.507	.194507	UG/L	0.3	MRI. 0.3	Naturally-occurring element found in the earth's crust and at low concentrations in seawater, and in some surface and ground water; cobaltous chlorido was formerly used in medicines and as a germicide
PWS ID#: 22	0004		l	<u> </u>		i i	est ri	ESULTS
1	T		Τ	Range of Delects or # of		1	201 10	20010
Contaminant	Violation Y/N	Date Collected	Level Detected	Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Inorganic Co	ntamina	ınts						
10. Barium	N	2011*	0.02	.01802	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	20111	2.3	1.1 2.3	ppb	100	100	Discharge from steet and pulp mills; erosion of natural doposits
14. Copper	N	2009/11*	0.2	0	ррm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	И	2011*	0.186	.182 1.86	ppm	4	4	Erosion of natural deposits; water addilive which promotes strong teeth; discharge from fertilizer and aluminum factories
Disinfection F	3y-Prod	ucts						
81. HAA5	N	2012	7	No Range	ppb	0	60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N	2012*	2.18	No Range	ppb	۵	80	By-product of drinking water chlorination.
Chlorine	N	2013	1.2	1 – 1,3	ppm	Ö	MDRL = 4	Water additive used to control microbes
PWS 1D#: 22	0005					TI	EST RI	ESULTS
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Inorganic Co	ntamina	ents						
10. Barium	N	2011*	0.0263	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Disinfection B	y-Produ	icts						
81. HAA5	N	2012*	2	No Range	ppb	0	60	By-Product of drinking water disinfection.
Chlorine	N	2013	1.1	1 1.2	ppm	0	MDRL ≈ 4	Water additive used to control microbes

Comment Contamination Co
Constanting Contaminants
Quantum N 2011
O Barrium N 2011 0.050 016 - 030 pm 2 2 0.000 ppm 4 0.05 0.000 ppm 2 2 0.000 ppm 0.05 0.000 ppm 0.000
Company
Copper
Process
Teach N
Section M 2011 76 No Range 190 50 Discharge receptorement and rectal references, action of natural deposits, Sechage from mines
Distriction By-Products Products Products Products Product Produ
Fig.
1
Materian National Nat
Volume Contemplate Conte
Contaminated Vision Date Level Regist of Discotts on # of Semination Date Contected Discotts on # of Semination Date Contected Discotts of Semination Date Discotts on # of Semination Date Discotts on makes
Contaminated Vision Date Level Regist of Discotts on # of Semination Date Contected Discotts on # of Semination Date Contected Discotts of Semination Date Discotts on # of Semination Date Discotts on makes
Contaminate Contaminates Conta
No 2011 0.9 No Range
Accessed. N. 2011 0.9 No Range 965 n/s 10 Ecolon of natural deposits, ament from critation, ruroll from glass and olectrones production wasters. Barrium N. 2011 0.016 No Range 900 0.0 2 2 2 Distributed of deposits, accept of natural deposits of the critical section of natural deposits of natural deposits of natural section of natural deposits
Content of the cont
Conserved N 2011 25 19 - 75 190 10
Copyright N 2009/11 0.4 0 9.09 13 3.47.1 Cornection of flavoured page time, crossor of making opposits, leaching from wood preservatives
Contention N 2011 16.28 No Range 196 200
Flooride N 2011 0 175 No Riemps print A 4 Constant print maked deposits under controlled subscript from pricial and selective selection. Asstratory from firefular and alterninate leads of the control of maked deposits under controlled subscript strong periods. Asstratory from firefular and alterninate leads of the control of maked deposits under controlled subscript strong periods and model deposits under controlled subscript strong periods of an activated deposits discharge from minor of maked deposits discharge from m
Selection N 2011 3-2 3-2-2 ptb 50 60 Osciolarge from profession and account of entired deposits, discharge from mines
Contaminant
March Marc
MAG
TTIM N 2013 2 14 No Flange pol 0 50 By-product of dinishing water displacation and super-scanning water displacation of mining water
Set submarked 1
Soore N 2013 15 1-10 ppm 0 MORE = Water address and to control microbes WS 1DH: 220062 TEST RESULTS Consentinant Votion Due Used Detected Suspect Excellent Suspect Excellent Medium and More Source and More Source of Contentination MORE SOURCE AND THE SOURCE OF Contentination TEST RESULTS UNI Medium-remain MCLG MCL Likely Source of Contentination
WS 1D/H; 22/0062 TEST RESULTS Contaminant Violation Date Level Delected D
WS ID/H: 220062 TEST RESULTS Contambranc Volsion Date Level Samples Exceeding McLACL More MCLACL Likely Source of Contemposion MCLACL MCL Likely Source of Contemposion
Committee Volume Volume Collected Delected Delec
Contaminant Y/N Collected Defected Samples Exceeding MCL/ACL MCL Likely Sciolage of Contamination
organic Contaminants
0
ppin 2 Enschange the bright metal retinence, endoor of natural deposits
100 Uscharge inon sales and purp minis; arosion of natural deposite.
Flaunde N 2011 0115 108 115 por 4 4 Erosino of natural deposits, secting from sood processaries.
38-30nes
N 200911 2 0 psb 0 AL=15 Consistent of household plumbing systems, crosses of natural deposits sinfection By-Products
Note N 2013 12 1-12 ppm 0 MORL = 4 Water addition used to control microbes.
lusi recesti sample. No sanjula required far 2013

Must recent sample. No sample required for 2013.

As you can see by the table, our system had no violations. We're proud that your dranking water meets or exceeds all Federal and State requirements. We have learned through our menituring and testing that some constituents have been detected however the FPA has determined that your water IS SAPIS at these levels.

We are required to monitor your drashing water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to crossure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, eleveral levels of feat on cause remous health problems, especially for program where mental young children. Lead in drinking water to primarily from materials and components associated with service lines and home planning. Our Water Association is responsible free providing high quality drinking water, but earnied control the verificy of naterials used in planning components. When your water has been stitling for several hours, you can minimize the potential for lead exposure by floating your ray for 30 seconds to 2 minutes before using water fee drinking or cooking. If you are concerned about lead in your water, you was write to have your water rests of information on lead in drinking water, frating methods, and steps you can take to minimize were is available from the Sack Drinking Water feeling or at http://www.epu.gov/sackwater/fead. The Mississippi State Department of Health Public Health Laboratory offers feed testing. Please contact 601:576-7582 if your wash to lawy your water tested

All sources of draking water site subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, morganic or organic cheroscals and radiosective substances. All drinking water, melating bottled water, may reasonably be expected to contain at less) small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water posses a licalib risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Holling at 1-800 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergoine origin transplants, people with HWAIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people whorld seek advice about drinking water from their health care providers. EPACDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological cuntammants are available from the Safe Drinking Water 186fine 1800-426-4791.

The City of Grenada works around the clock to provide top quality water to every tap. We have four certified operators on staff, who would be pleased to answer any and all customer questions. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

CIR IS POSIZED Ats
1) WATE BILLING OFFICE
GRENRON, 115 3.8901
586 BRYANT ST
586 BRYANT ST CRENKOR, M. 38901

•

•

TODD KYLE 509 CHESTNUT STREET GRENADA, MS 38901 DAYS OF OPERATION MON-FRI 8:00 AM- 5:00 PM PHONE: 662-227-3400

FAX: 662-226-0561

AFTER HOURS/EMERGENCIES: 662-227-3415 QUESTIONS: WATERBILLING@CITYOFGRENADA.MS

SERVICE A	ADDRES	1459 WOODED DR		
SERVICE	PREVIOUS READING	CURRENT READING	READ DATE	CONSUMPTION
WATER	86600	86600	05/06/2014	0
STATE OF		DETAIL OF OUAS		

	DETAIL OF CHARGES	
SERVICE PERIOD	04/07 - 05/06	
SERVICE DESCRIPTION WATER GARBAGE		<u>AMOUNT</u> \$5.65 \$13.00

TOTAL CURRENT CHARGES \$18.65

Check here for E-Billing Form on Reverse side

ACCOUNT NUMBER	00012606
BILLING DATE	5/15/2014
	3, 1, 1, 2, 1, 1
PREVIOUS BILL	\$21.98
PAYMENTS	-\$21.98
BALANCE FORWARD	\$0.00
CURRENT CHARGES	\$18.65
TOTAL DUE	BANK DRAFT
DATE DUE	05/30/14

IMPORTANT INFORMATION

FAILURE TO RECEIVE THE BILL DOES NOT EXCUSE
SERVICE DISCONNECTION

PAYMENT OPTIONS

- BY MAIL (ONLY SEND CHECK OR MONEY ORDER)
- AFTER HOURS BOX LOCATED AT CITY HALL
 (ONLY CHECK OR MONEY ORDER DO NOT PAY
 IN CASH). CITY IS NOT RESPONSIBLE FOR LOST
 CASH. PAYMENTS ARE APPLIED TO YOUR
 ACCOUNT THE NEXT BUSINESS DAY.

IMPORTANT MESSAGE
THIS ACCOUNT DRAFTED DO NOT PAY.

Visit us on the web at - www.cityofgrenada.ms

PLEASE DETACH AND RETURN BOTTOM PORTION IF PAYING BY MAIL. PLEASE DO NOT STAPLE OR FOLD. PLEASE WRITE YOUR ACCOUNT NUMBER ON YOUR CHECK.
TO BETTER ASSIST YOU, PLEASE BRING YOUR COMPLETE BILL WHEN PAYING IN PERSON.

116 Main St. Grenada, Mississippi 38901

RETURN SERVICE REQUESTED

իցինարովուկարդարոցիկոկոիվունությանկիկիի

1157 1 AV 0.381

Todd Kyle 509 Chestnut St Grenada MS 38901-5501

BILL DATE	ACCOUNT NUMBER	DATE DUE
5/15/2014	00012606	05/30/14
PREVIOUS BALANCE	BALANCE FORWARD	TOTAL DUE
\$21.98	\$0.00	BANK DRAFT
		70
		LE-